Tetrahedron Letters No. 10, pp 889 - 892, 1977. Pergamon Press. Printed in Great Britain.

THE CONCERTED CYCLOADDITION OF CYCIODCTATETRAENE AND MYAD;

A BIS-PERICYCLIC PROCESS

Herver Isaksen and James P. Snyder*

Department of General and Organic Chemistry The B. C. Brsted Institute, University of Copenhagen DK-2100 Copenhagen, Denmark

(Received in UK 4 **January 1977; received in UK for publication** 2 **February** 1977)

Cyclooctatetraene (COT, 1) is reluctant to participate in cycloaddition reactions leading **to a Diels-Alder type product. Ordinarily the tetraene delivers the analog of the tetracyclic a**dduct <u>3</u> via its valence tautomer, bicyclo(4.2.0)-octatriene. I However <u>1</u> and certain monosubstituted derivatives combine slowly with triazolinediones 2 in low yield to give tricycle **4 often accompanied by 2 depending on the temperaturem2 The presumed electrophilicity of 2 has led Huisgen, Eons and Schnegg to suggest that the transformation proceeds by way of a zwitterionic homotropylium intermediate 2. 2b**

In order to test the proposed incursion of a charge-separated species in the formation of 4, we have measured the rate of reaction between cyclooctatetraene and MTAD $(2, R = CH₂)$ as a **function of solvent at 20.0° where the bicyclic isomer does not intervene. la,Pb For comparison** the adduction of MTAD and cyclooctadiene (COD) to give $\underline{6}^3$ has been similarly studied. The **absence of extended conjugation for the diene prevents the operation of a dipolar structure** such as 5. The rates are all second order and have been obtained by following the disappearance **of MTAD at 525-538 nm (Table).**

For both COT and COD the reaction rate is essentially solvent independent, although similar small rate fluctuations are evident over a wide range of solvent polarity. At the extremes k _{CH3}CN^{/k}C₆H₆ = 0.83 and 0.68 for the diene and the tetraene respectively. The intervention

			$\text{coh}^{\mathbf{b}}$		COT ^C	
			10^2 k	ΔG^{\dagger}	10^2 k	ΔG^{\dagger}
	E	E_T	$1 \text{ mol}^{-1} \text{s}^{-1}$ kcal/mole		$1 \text{ mol}^{-1} \text{s}^{-1}$	kcal/mole
benzene	2.3	34.5	$1.8 + 0.003$	19.5	0.0028 ± 0.0002	23.3
chlorobenzene	5.6	37.5	$4.3 + 0.04$	19.0	0.0063 ± 0.0002	22.8
cn_2c1_2	8.9	41.1	13.0 ± 0.4	18.3	0.012 ± 0.0001	22.4
acetone	20.5	42.2	$0.34 + 0.002$	20.4	$0.0035 + 0.0006$	23.1
CH ₃ CN	26.0	46.0	1.5 \pm 0.03	19.6	0.0019 ± 0.00005	23.5

TABLE. Second order rate constants for the cycloaddition of cyclooctatetraene and cyclooctatriene to MTAD as a function of solvent (20.0°).a

a) **All rate measurements were performed in duplicate. The rate constant plots show an average correlation coefficient of 0.9997. Error limits for k's have been taken as one-half the range between each pair of duplicate measurements giving a maximum error** in ΔG^{\dagger} of \ddagger 0.2 kcal/mole.

- **b)** The rates were obtained during the last 50-95% of reaction with $[MTAD] = 0.009-0.015$ **M** and $[COD]_0 = 0.04-0.10$ M.
- c) The rates were determined from 30 to 65% conversion; [MTAD]_o= 0.007-0.10 M,[COT]_o= **0.08-0.3 M.**

of a switterionic intermediate in the cycloaddition of TCNE and enol ethers leads to a rate enhancement of 1200-11,000 (k_{cm} - α / k_{cm}) and 200-1000 (k_{cm} - α / k_{cm} -) for a comparable differ- 3^{20} 3^{20} 2^{3} ence in solvent ε and E_m values respectively.⁴ Furthermore the absolute values of the rate **constants for COD and the magnitude of the rate increments with a change in solvent are similar to the Diels-Alder behavior of MTAD with deactivated dienes. 5 In sum the rate-solvent relation**ship argues persuasively for a concerted $(\pi 4_{\rm s} + \pi^2_{\rm s})$ cycloaddition between MTAD and both **cyclooctadiene and monocyclic cyclooctatetraene. ⁶**

Methoxy COT reacts with TCNE 7 and PTAD $^{2\texttt{C}}$ (2, R = C_cH_c) to give positional isomers of the analog of <u>4</u>. The exclusive formation of triene from these reactions and the ability of -OCH₃ **to stabilize a cationic center have been offered as additional evidence for the involvement of a homotropylium intermediate. ⁷ For substituted COT derivatives a changeover in mechanism from a concerted to a zwitterionic process is conceivable. It is more likely, however, that structural modification leads to a complex interplay of the CG-T/bicyclo(4.2.0)-octatriene equilibrium composition, la,8 the energy of the highest occupied COT molecular orbital, 9 and the conformational barrier to ring inversion. 10-12 All of these probably contribute to the ultimate cyclo**addition partition of $\frac{3}{2}$ and $\frac{4}{3}$.

With regard to the latter conformational factor, it is of interest that for any given solvent MTAD combines with COT 100-1100 times slower than with COD corresponding to a $\Delta\Delta G$ =

2.7-4.1 kcal/mole (20.0°, Table). The energy barrier difference is nicely accommodated by consideration of the conformational behavior of the eight-membered rings as they travel to the cycloaddition transition state. The dihedral angles between adjacent double bonds in COD and COT are 40-60^{o 14,15} and 58-60^{o 14,16} respectively. Thus to achieve a reasonable cycloaddition **transition state, the diene system must approach a near planar conformation. For cyclooctadiene** the energy cost amounts to ca. 9 kcal/mole at -40⁰,¹⁷ while flattening of cyclooctatetraene at -10⁰ requires 13.7 kcal/mole.¹⁰ Correction to 20^{0 18} leads to an energy barrier difference of $\Delta\Delta G^{\dagger}$ = 4.4 kcal/mole in close agreement with the measured $\Delta\Delta G^{\dagger}$ (COT-COD).

Finally we would like to point out that the cyclooctatetraene/MTAD union is an example of a bis-pericyclic process in which one fragment of the transition state is a formal 6-electron, aromatic (or "allowed") cycle, the other an 8-electron, anti-aromatic (or "forbidden") cycle, 7. **It has been argued 19 that the latter ought to oppose the former leading to a higher energy transition state relative to a model without the 8-electron component, e.g. the cyclooctadiene** cycloaddition. Consequently one might conclude that $\Delta\phi^{\dagger}$ (COT-COD) arises from the "partly**forbidden" Cd adduction. This viewpoint, however, is an artifact of representing pericyclic** transition states in terms of isolated, monocyclic w-ground state isoelectronologs.²⁰ An **appropriate analysis requires a model wherein all interacting components of the key molecular orbitals of each fragment are explicitly considered. The MTAD/CCT reaction undoubtedly involves the initial transfer of electrons from the diene to the dienophile, i.e. a "normal" Diels-Alder process. The relevant frontier orbitals (COT-RCMO/MTM+LDMO) are depicted in 8. Plsnarization of cyclooctatetraene permits a symmetry acceptable interaction between the addends. Clearly no energetically unfavorable factor arises from this primary association. By the principle of microscopic reversibility, ¹⁹ a similar situation obtains for chelotropic fragmentation. References**

1. a) R. Huisgen, F. Mietzsch, G. Boche and H. Seidl, Chem. Soc., Spec. Publ., No. 19, 3 (1965); **b) R. C. Cookson, S. S. 8. Giliani and I. D. R. Stevens, J. Chem. Sot., C, 1905 (1967).**

- **2. a) A.B. Evnin, R.D. Miller and G.R. Evanega, Tatrahedron Lett., 5863 (1968)j b) R. Huisgen, W.E. Konz and U. Schnegg, Angew, Chem., 84, 765 (1972); internat. Edit., 11, 715, (1972); c) L.A. Paquette, D.R. James and G.H. Birnberg, J. Amer. Chem. Sot., 93, 7454 (1974).**
- **3. J.P. Snyder, V. T. Bandurco, F. Darack and H. Olsen, J. Amer. Chem. Sot., 96, 5158 (1974).**
- **4. G. Steiner and R. Huisgen, J. Amer. Chem. Sot., 95, 5056 (1973).**
- 5. M. **E. Burrage, R.C. Cookson, S.S. Gupte and I.D.R. Stevens, J. Chem. Sot. Perkin II, 1325 (1975.**
- 6. A zwitterionic intermediate appears to be demanded by the addition of PTAD $(2, R = C_c H_c)$ to alkylated semibullvalenes. Unlike the formation of 4, the reaction is formally "forbidden" **and takes place with deep-seated rearrangement of the carbon skeleton: Y.C. loong, W.T. Borden and A. Gold. Tetrahedron Lett., 1549 (1975)j R. Askani, R. Kirsten and B. Dugall, Tetrahedron Lett., 3891 (1976).**
- 7. J. Gasteiger and R. Huisgen, Angew. Chem., 84, 766 (1972); internat. Edit., 11, 716 (1972.
- 8. R. Huisgen, G. Boche, A. Dahmen and W. Hechtl, Tetrahedron Lett., 5215 (1968); G. Schröder, G. Kirsch, J.F.M. Oth, R. Huisgen, W.E. Konz and U. Schnegg, Chem. Ber., 104, 2405 (1971); **J. Gasteiger, G.E. Gream, R. Huisgen, E. Konz and U. Schnegg, ibid., 2412 (1971).**
- 9. For example in agreement with the ability of OCH₂ to lower the energy of the first ioniza**tion potential of a diene , and thereby the HCMC-LUMC energy gap, l- and 2-methoxy** butadienes react ca. 2000-4000 times faster than butadiene with TCNE in the Diels-Alder reaction: R. Sustmann and R. Schubert, Angew. Chem., 84, 888 (1972); internat. Edit., **l& 840 (1972).**
- **10. F.A.L. Anet, J. Amer. Chem. Sot., E, 671 (1962); F.A.L. Anet, A.J.R. Bourn and Y.S. Lin,** ibid., 86, 3576 (1964).
- **11. Cyclooctatetraenes: D.E. Gwynn, G.M. Whitesides and J.D. Roberts, J. Amer. Chem. Sot., 87,** 2862 (1965); G.W. Buchanan, Tetrahedron Lett., 665 (1972); Cyclooctatrienes: R Huisgen **and G. Boche, ibid., 1769 (1965); M. St.-Jacques and R. Prud'homme, ibid., 4833 (1970);** Y. Kitahara, M. Oda and S. Miyakoshi, ibid., 4141 (1975); Y. Kitahara, M. Oda, S. Miyakoshi **and S. Nakanishi, ibid., 4145 (1975).**
- 12. **Cyclooctatrienone: C. Ganter, S.M. Pokras and J.D. Roberts, J. Amer. Chem. Sot., E, 4235 (1966).**
- **13. This supposition is supported by the insensitivity of the PTAD/methoxy-cyclooctatetraene cycloaddition rate to solvent polarity: G.R. Evanega, unpublishedi E. Hedaya (Union** Carbide), personal communication.
- **14. C. Batich, P. Bischof and E. Heilbronner, J. Electron Spectrosc., 1, 333 (1972).**
- **15. M. Traetteberg, Acta Chem. Stand., E, 1724 (1966); 0. Bastiansen, A.M. Seip and J.E. Boggs, Perspact. Struct. Chem., Q, 60 (1971).**
- 16. a) M. Traetteberg, Acta Chem. Scand., 24, 2285 (1970); b) 1,3-Cyclooctadiene is clearly **a mixture of at least two major conformers in solution: B. Schrader and A. Ansmann, Angew. Chem., 87, 345 (1975)r internat. Edit., 14, 364 (1975), and ref. 12.**
- **17. F.A.L. Anet and I. Yavari, Tetrahedron Lett., 1567 (1975).**
- 18. A Δs^{\dagger} = -0.7 e.u.¹² is assumed for both COD and COT.
- 19. A.G. Anastassiou and H. Yamamoto, J. Chem. Soc., Chem. Commun., 840 (1973).
- 20. H. E. Zimmerman, Accounts Chem. Research, 4, 272 (1971); M.J.S. Dewar, Angew. Chem., 83, 859 (1971); internat. Edit., 10, 761 (1971); M.J.S. Dewar and R.C. Dougherty, "The PMO **Theory of Organic Chemistry", Plenum Pub. Corp., pp. 347-373 (1975).**